PROGRAMME DE COLLES DE CHIMIE PC*1

SEMAINE N°7: 17 AU 22 NOVEMBRE

Formules de Lewis de la semaine : CH_3 , NO, SO_3 , HI, CrO_3 , MgH_2 , NO_3^- , PH_5 , PF_3 , SO_4^{2-} , SF_4 , NH_3 , $S_2O_3^{2-}$, XeF_4 , C_2H_2 , IBr, $S_4O_6^{2-}$, CH_2O , F_2O , NO_2^{-}

COURS

CHAPITRE 1 : ORBITALES ATOMIQUES

- I. Préliminaires (pas de question de cours sur ce paragraphe)
- II. Description probabiliste de l'atome (pas de question de cours sur ce paragraphe)
- III. Modèle quantique de l'atome d'hydrogène
 - III.1 Résultats quantiques pour l'atome d'hydrogène
 - III.1.1 Orbitales atomiques
 - III.1.2 Nombres quantiques
 - III.2 Représentation des orbitales atomiques
- \rightarrow seule question de cours possible sur le paragraphe III.2 : « représentations conventionnelles des OA s, p »
 - III.3 Cas des hydrogénoïdes
 - III.3.1 Résolution de l'équation de Schrödinger
 - III.3.2 Représentation des OA des hydrogénoïdes
- IV. Modèle quantique pour les atomes polyélectroniques
 - IV.1 Position du problème
 - IV.2 Approximation orbitalaire ou monoelectronique
 - IV.3 Résolution de l'équation de Schrödinger
 - IV.4 Configurations électroniques
- V. Architecture du tableau périodique des éléments
 - V.1 Construction historique
 - V.2 Configuration électronique et tableau périodique des éléments
 - V.3 Ensemble d'éléments particuliers
- VI. Évolution de quelques propriétés dans la classification périodique des éléments
 - VI.1 Évolution du nombre quantique principal n et de la charge effective Z*
 - VI.2 Énergie des OA et électronégativité
 - VI.2.1 Énergie des OA
 - VI.2.2 Évolution dans la classification périodique
 - VI.2.3 Électronégativité
 - VI.3 Rayon atomique et polarisabilité
 - VI.3.1 Rayon orbitalaire et rayon atomique
 - VI.3.2 Évolution dans la classification périodique
 - VI.3.3 Polarisabilité
 - VI.4 Bilan général

CHAPITRE 2: ORBITALES MOLECULAIRES DES MOLECULES DIATOMIQUES

- I. Position du problème Hypothèses fondamentales
 - I.1 Approximation de Born Oppenheimer

- I.2 Approximation monoélectronique ou orbitalaire
- I.3 Méthode CLOA (ou LCAO)
- II. Interaction de deux OA identiques sur deux centres
 - II.1 Application à la molécule de dihydrogène
 - II.2 Densité de probabilité de présence
 - II.3 Représentation des OM
- III. Énergie des orbitales moléculaires
 - III.1 Molécules homonucléaires : interaction de 2 OA identiques
 - III.1.1 Niveaux d'énergie des OM
 - III.1.2 Remplissage des niveaux d'énergie des OM
 - III.1.3 Application aux molécules de la 1ère ligne du tableau périodique
 - III.2 Molécules hétéronucléaires : interaction de 2 OA différentes
 - III.2.1 Niveaux d'énergie des OM
 - III.2.2 Forme des OM
- IV. Recouvrement des orbitales atomiques
 - IV.1 Critère du recouvrement maximal
 - IV.1.1 Seules les orbitales de valence peuvent se recouvrir
 - IV.1.2 Seules les orbitales de mêmes étiquettes de symétrie peuvent se recouvrir
 - IV.2 Les deux types d'orbitales moléculaires
 - IV.2.1 OM σ : recouvrement axial d'OA
 - IV.2.2 OM π : recouvrement latéral d'OA
 - IV.2.3 Comparaison du recouvrement axial et du recouvrement latéral
- V. Application aux molécules diatomiques
 - V.1 Molécules diatomiques homonucléaires A₂
 - V.1.1 Principes de construction des diagrammes d'OM
 - V.1.2 Exemple de H₂
- → Le diagramme de H2 doit être connu par cœur
 - V.1.3 Molécules A₂ issues d'atomes de la deuxième ligne du tableau périodique
- \rightarrow Les diagrammes du cours O_2 , N_2 , F_2 , Cl_2 , doivent savoir être reconstruits sans indication et sans interaction s-p
- → La notion de diagramme corrélé/non corrélé est hors programme

Le cas des molécules diatomiques hétéronucléaires AB n'a pas encore été traité

EXERCICES

Thermodynamique : chapitre 9 si nécessaire Structure de la matière : chapitres 1 et 2

- → Pas d'exercice mettant en jeu les expressions analytiques des OA
- \rightarrow Chapitre 1 : privilégier des exercices autour des configurations électroniques et du tableau périodique
- \rightarrow Chapitre 2 : seules constructions de diagramme *ex nihilo* autorisées : A_2 en négligeant les interactions s-p). Pour étudier d'autres cas, on donnera le diagramme déjà ou en partie construit

Révisions PCSI: structure de la matière (modèle de Lewis, méthode VSEPR, mésomérie, interactions non covalentes)

→ Un exercice obligatoire sur un de ces thèmes si pas abordé en question de cours